I B.Tech - I Semester - Regular Examinations - FEBRUARY - 2023

DIGITAL LOGIC DESIGN

(Common for AIML, DS)
Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Explain BCD code and Excess-3 code with an example.	L2	CO1	7 M
	b)	Using 10's complement, subtract i) $72532-03250$ ii) $03250-72532$	L2	CO1	7 M
OR					
2	a)	Draw the symbol of Universal gates.	L2	CO1	7 M
	b)	Convert the following to Decimal and then to Octal (i) 4234_{16} (ii) 10010011_{2}	L2	CO1	7 M
UNIT-II					
3	a)	Simplify the following Boolean function using K-Map. $\begin{aligned} & \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,2,3,5,9,12,14,15)+ \\ & \sum \mathrm{d}(4,8,11) \end{aligned}$	L3	CO 2	7 M
	b)	Construct the truth table of the function: $\mathrm{F}=\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{ab}{ }^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{b} c^{\prime}+\mathrm{ab} c^{\prime}$	L3	CO 2	7 M

OR					
4	a)	Simplify the following Boolean expression using K-map. $\begin{aligned} \mathrm{F}(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})= & \mathrm{XZ}+\mathrm{W}^{\prime} \mathrm{XY} Y^{\prime}+\mathrm{WXY}+\mathrm{W}^{\prime} \mathrm{YZ} \\ & +\mathrm{WY}^{\prime} \mathrm{Z} \end{aligned}$	L3	CO 2	7 M
	b)	State and prove Demorgan's theorem.	L3	CO 2	7 M
UNIT-III					
5	a)	Construct Binary Adder and explain the operation.	L3	CO3	7 M
	b)	Design 32:1 Mux using two 16:1 Muxs and one 2:1 Mux.	L3	CO3	7 M
OR					
6	a)	Implement the function $\mathrm{F}=\sum \mathrm{m}(0,1,2,4,5,8,11,12,15)$ using 8:1 Multiplexer.	L3	CO3	7 M
	b)	Design a Half Subtractor using logic gates.	L3	CO3	7 M
UNIT-IV					
7	a)	Convert the JK - Flip Flop into T - Flip Flop with truth table, characteristic table and excitation table.	L3	CO3	7 M
	b)	What is the drawback of SR- Flip Flop, design a Flip Flop which overcomes this drawback and explain with neat diagram.	L4	CO4	7 M
OR					
8	a)	Convert the SR- Flip Flop into the JK-Flip Flop. Draw and explain the logic diagram.	L3	CO3	7 M

	b)	Draw the circuit of SR- Flip Flop using gates and explain its operation.	L3	CO3	7 M
UNIT-V					
9	a)	Develop a 3-bit Ripple-Up counter.	L3	CO3	7 M
	b)	Design a 4-bit Synchronous counter with D Flip Flops and explain its working.	L3	CO3	7 M
OR					
10	a)	Draw the block diagram of an Asynchronous sequential circuit.	L3	CO3	7 M
	b)	Design a 4-bit shift register using D Flip Flops and explain its working.	L3	CO3	7 M

